Acetyl compounds {acetyl-CoA} can enter lipid chain, go to TCA cycle, or become pyruvate. Acetyl-CoA breaks down to water and carbon dioxide. Pyruvate can become acetyl-CoA. Amino acids can make acetyl-CoA. Fatty acids can become acetyl-CoA.
Last carbon can have aldehyde functional group and next-to-last carbon can have alcohol functional group, -CHOH-CHO {aldol}. Aldol and ketol have tautomerism. Aldol can transfer two protons to last carbon to make ketol, -CHO-CHOH. Ketol can transfer two protons to next-to-last carbon to make aldol.
Carbohydrates have carbonyl group {carbonyl group}. First carbon can have aldehyde group {aldose}. Second carbon can have ketone group {ketose}. In water, ketone oxygen can substitute for hydroxyl on next-to-last carbon, to make five-carbon ring {furanose}. Furanose is hemiketal. In water, aldehyde oxygen can substitute for hydroxyl on next-to-last carbon to make six-carbon ring {pyranose}. Pyranose is hemiacetal.
anomer
Carbonyl carbon can be axial {alpha-glycosidic bond} or equatorial {beta-glycosidic bond} to sugar ring. Oxygen can be on right {alpha ring} or left {beta ring}. Alpha and beta rings have similar properties.
Proton can transfer from ketol last carbon to next-to-last carbon to make alkene double bond between carbons and alcohol on next-to-last carbon, -COH=CHOH {enol}. Enol can add water molecule to make separated charges, -(H2OC+OH)-(C-HOH) [2 is subscript and + and - are superscripts].
Ketone can be at next-to-last carbon and alcohol on last carbon, -CO-CH2OH [2 is subscript] {ketol}. Aldol and ketol exhibit tautomerism. Ketol can transfer two protons to next-to-last carbon to make aldol, -CHOH-CHO. Aldol can transfer two protons to last carbon to make ketol.
5-Chemistry-Biochemistry-Carbohydrate
Outline of Knowledge Database Home Page
Description of Outline of Knowledge Database
Date Modified: 2022.0225